Data
Advertisements
Data
| |
Data proliferation is when data grows rapidly. This tends to have negative connotations as it is often used to describe data that is replicated and low quality. Such data can be expensive to clean up, manage and govern. In many cases, data repositories become compliance and operational risks that have little value to an organization but are difficult to discard as analysis may be required to understand its structure, sources and uses. The following are illustrative examples of data proliferation.
Customer DataIt is common for multiple systems in an organization to maintain customer data. Such data is commonly out of sync between systems with no clear single source of truth. This can cause operational failures such as sending a bill to the wrong address.DocumentsKnowledge workers tend to create a lot of documents that get checked into a document management system. In many cases, such documents become completely unused with time but are retained as a precaution.
CommunicationCommunications such as emails can gather at the rate of hundreds per employee per day. Most communications lose their value almost immediately but often are retained for an extended period of time.BackupsBackups of data, documents and communications often need to be retained in case something important was deleted from the source systems. If someone deletes a critical email, the only copy may be in a backup from a particular day last year. As such, backups are commonly stored for long periods of time. This can consume considerable resources despite the fact that backups are rarely used.
Transactional DataTransactional data such as market trades and ecommerce purchases can grow extremely quickly. Transactional data is often viewed as valuable for historical research. For example, it is common to look at patterns in stock trades going back decades.Social DataData that is shared by people on a public or private social network. Often viewed as valuable for purposes such as market research and machine learning.
Sensors & MachinesMachine and sensor generated data. Sensors have become cheap to the extent than they can be embedded in everyday objects in great numbers. Such data may be generally less valuable than human generated data. For example, video of a train tunnel or data from a tire pressure sensor isn't interesting for long. Nevertheless, sensor data potentially represents a gigantic source of data that is far larger than all other sources combined.
Data Management
This is the complete list of articles we have written about data management.
If you enjoyed this page, please consider bookmarking Simplicable.
© 2010-2023 Simplicable. All Rights Reserved. Reproduction of materials found on this site, in any form, without explicit permission is prohibited.
View credits & copyrights or citation information for this page.
|